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T.ACT, continued from other side

fluids; 8) The develogrernt of efficient-methodls to analyze the structure of
-range attractors in the description of dynamical systems; 9) The analysis of
-)rscal.e instability as a mechanism for destabilization of coherent flow structures.
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ABSTRACT

Data from simulations of channel flow and decay of homogeneous turbulence 1ii-

dicate anomalously strong correlation of velocity and vorticity directions ('local Beltramizt-

tion') in band-filtered velocity fields when the band consists of a thin cigar in mode space

(whose physical space representation is as an array of 'pancake eddies'). Spherical shells or

other broad bands in mode space do not seem to exhibit the effect.
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In fully developed three-dimensional turbulence, 'local' interactions (that is, III-

teractions between comparable scales) have been traditionally thought to be dynamically

much more significant than nonlocal interactions (for example, in the cascade of turbulent

energy).'

However, analysis of experimental data on energy transfer shows2 that those in-

teractions which contribute most strongly involve wavenumber triads which, while local,

have aspect ratios (ratio of largest to smallest wavenumber) in the range 5 to 10. The

ALHDIA3 yields results typical of second-order turbulence. It predicts that about 20% of the

total transfer come from triads interactions with aspect ratios less than 2, while about 80%

come from triads with aspect ratios less than eight. However, these figures give less than the

whole story. If local interactions are consistently removed from the dynamics, the loss of the

energy transfer from these interactions is counterbalanced with an enhanced transfer by the

remaining interactions, at least within the framework of the closures 5. The result is that re-

moving triads with aspect ratios eight and less leaves the total energy transfer nearly un-

changed, instead of reducing it by 80%.

To analyze the effect of local versus nonlocal interactions, we decompose the

velocity field v(r) and the vorticity field co = V x v as v(r) = XvJ(r); wo(r) = Ewiir) .

Hcre the band-filtered velocity field vJ(r) is defined as vj(r)= 2u(k)exp(ik-r) where the

sum extends over wavevectors k within suitable distinct wavevector bands Bj. More g.ne.ril

ly, the band filtered field is defined as vl(r) = u(11)n(r) where On(r) is a complete set ,it
nW It
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orthogonal functions. In the channel flow simulations reported below, the velocity field i,

Fourier transformed in the x- and y-directions while the Chebyshev polynomials Tp(z) are

used in the z-direction perpendicular to the walls. In the simulations of decaying turbulence

reported below, three-dimensional Fourier series are used.

In terms of the band-filtered fields, the Navier-Stokes equations for incompressi-

ble flow are

-v = NLj + v0 V 2v
1,J

where Ni j  v i x cj - V 7rj and V ij subtracts out the divergent part of v i x . A meas-

ure of the strength of local interactions is given by the intra-band contribution Ni i to the

nonlinear term in (1).

In two-dimensional flow, velocity and vorticity are perpendicular, so the intra-

band term Nij can only be small through pressure balancing. This is indeed observed in

high-Reynolds number numerical simulations of decaying two-dimensional flow, which

display organization of the flow into quasi-one-dimensional vortex-gradient sheets 8 or nearly

circular vortex patches9 .

In three-dimensional flow, depletion of local nonlinear interactions can occur ei-

ther by pressure balance within Ni, or, more directly, by local 'Bcltramization' in which Ih

band-filtered fields vi and coi are nearly parallel in physical space. While local pressure Iml

- d ~~~ . -2-* *-,* .
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ance does not allow for complicated instantaneous three-dimensional flow topologics,", l,,,l

Beltramized flows are not so restricted. In this work, we have investigated the possibility of

local Beltramization using results of a direct numerical of turbulent channel flow at a Rey-

nolds number Re. = 184 based on the half-channel-width and the friction velocity. Thus the

channel width in dimensionless wall coordinates is H = 368. The computer code is described

in Ref. 11. Two channels of different linear dimension have been considered. The number

of grid points used in these simulations was 323 and 322x64, respectively. The same effect

has also been studied in ( 1283) simulations of the decay of homogeneous turbulence.

The analysis used here follows an earlier analysis of the full (non-bandpass-
',

filtered) flow field v(r).1 2 Specifically, we evaluate the distribution of the cosine of the angle

0 between the velocity v(r) and vorticity do(r). We subdivide the interval - 1 < cos 0 < I

into two hundred equally spaced intervals and define the probability function P(cos 0) as the

number of grid points having the angle 0 between the bandpass-filtered velocity and vortici-

ty. The variable cos 0 is the relevant one in three-dimensions because of the form of the

volume element. Note that FP(cos 0) = N where N is the total number of grid points. Each

half of the channel (0 < z < 184) is subdivided into three intervals: 0 < z < 15:

15 :< z < 40; 40 < z < 184. In order to avoid the effects of the walls, the velocity field has

been analyzed in the outer part of the channel 40 < z 5 328. The Fourier-Cheb.,hcv

band-filtering has been performed using the data on the entire flow field. Then the filtercd

field is transformed back into physical space and the resulting ficld is analysed locally i ,l .'cc

-3-



for 40 !5 z < 328. We recognize that there may be ambiguity in space localization due to an

uncertainty principle".

The results plotted in Fig. I for the band Bi consisting of k. = 4;ky = 2;

p = 15, 16, 17, 18 show that v'(r) and ci'(r), tend to align; that is the probability function

P(cos 0) is sharply peaked at cos 0 = - 1 at t = 50. To characterize the effect we define the

Beltrami ratio as B= max[P(l), P(- 1)I/Pav(0), where Pay(0) is the value of P(cos0) aver-

1 < o0<1
aged over the interval -I < cos < -. In Fig. 2, we plot the time evolution of B(t) for

3 3

40 < t < 77 with samples taken at the time intervals At = 1. We find that B > 12 approxi-

mately 30% of the time. Continuing to add modes to the band leads to disappearance of the

peak of P(cos 0) when the band is too wide. A similar effect has been observed in numerical

simulation of decaying homogeneous turbulence (see Fig. 3). It is typical for a variety of

realizations of band-filtered velocity fields in both channel and decaying turbulence simula-

tions that as soon as a few modes are present, there is an organization of the flow field in

which velocity and vorticity are almost aligned.

It should be mentioned that the band-filtered velocity field vJ does not satisfy the

incompressibility condition V .vi = 0 because of the properties of the Chebyshev polynomi-

als. To assess the role of incompressibility we have subtracted the nonsolenoidal part troii

the filtered velocity field and calculated the probability function P(cosO) of the residual lickl!

satisfying the V v = 0 constraint. The results are presented in Fig. I(b), 2(h). It ih u,h -

-4-



ous that imposition of the incompressibility condition does not strongly change the rc,,Ljl:,

presented in Fig. l(a), 2(a) since the filtered velocity field V(kx,ky,p) is only wcakl%

compressible in the part of the channel we consider here (z, > 40). It is only in the wall re-

gion z, < 15 that the effect is not observed. It is clear from Fig. 2(b) that imposing the in-

compressibility constraint leads to an increase of the value of B by some 10-40%. An in-

teresting property of the probability density P(cos0) is its asymmetry P(1) * P(- I) when

the Beltrami ratio B is large. However, the mean distribution P(cos0) obtained from 35

realizations in the interval 40 < t < 75 is very symmetric.

This 'local Beltramization' effect is observed to occur for general wavevector

packets W with large aspect ratio k > Ak >> 1 where k is a typical wavenumber in the

band and Ak is the 'diameter' of the packet [Ak = max( Ik - pI with k, p e W)]. These

packets produce 'pancake' eddies in which both the velocity and vorticity are quasi-two di-

mensional fields. This may be most easily seen by considering a prototype of such a packet.

namely, one for which k. << kxk y for all k in the packet and k. restricted to a narrow

range. Thus the incompressibility condition gives w = -(kxu + kyv)/k z << Iu I + v 1, while

the vorticity field co = ikxv satisfies co < < 1OX I + loy0 1. For such pancake eddies, we would

expect, in the absence of other correlations, that the angle between v and 0o is uniformly dis-

tributed in the plane of the pancake, so that P(cos0) - 1/!sin 01 with strong peilks i!!

cos 0 = + 1.

To test whether the observed effect (see Fig. 1, 2') is of dynamic or Kinema;tic 1,1

-5.



ture we chose a number of distinct band-filtered fields corresponding to a few different in-

stants of time t (see Fig. 2(a)). From these fields we generated 1000 different realizations by

uniformly distributing the complex numbers v(k,,ky,p) for each selected mode in the band.

Imposing the incompressibility condition on each of the band-filtered random fields we have

generated another 1000 realizations. An additional 500 random realizations were generated

by uniformly distributing the random complex numbers to each of the (32x32x64) modes

of the total field v(kX,ky,p). The resulting random velocity fields were made incompressible

and then band filtered. The weakly compressible band-filtered fields were again made in-

compressible by subtraction of the nonsolenoidal part. Then the probability density P(cos 0)

was calculated for each member of the ensemble consisting of 2500 realizations. We then

calculated the cumulative probability p(B) that gives the probability that one Beltrami ratio is

larger than B. The function p(B) derived from these 2500 fields was compared with the

function p(B) corresponding to 35 realizations obtained from the time evolution of the

band-filtered numerical solution of the Navier-Stokes equation at 40 < t < 75 taken at

At = 1. The results are presented in Fig. 4. These runs suggest that the observed effect

does not have a simple kinematic explanation. However we must note that the Chebyshev-

Fourier modes do not diagonalize the two-point covariance function of the observed velocity

field and for this reason the randomized comparison fields do not exhibit the two-point co-

variance of the observed fields. This property will be investigated later 13

The generality of the above results on the bandpass-filtered geometrical ordcr ti

-6-



velocity and vorticity is yet to be tested on other turbulent flows. It is difficult now to give .-

systematic explanation for local Beltramization. This may actually be as, or more, difticult

than explaining the remarkable buildup of correlations between velocity and magnetic fields

in strong MHD turbulence. 14 We stress that it is unlikely that any of the traditional two-

point closures can provide insight into the process of local Beltramization. 1 5

We now speculate on several instability mechanisms that may be important in the

dynamics that lead to local Beltramization. 19  First, secondary instability is a short

wavelength instability of quasi-two-dimensional flows that tends to produce locally aligned

vorticity and velocity. On the other hand, anisotropic pancake eddies are subject to the

long-wavelength hyperscale instability. These eddies are also unstable to the AKA instabili-

ty 18 which also leads to generation of Beltrami flows at large scales. Perhaps a combination

of these instabilities, acting cyclically, can explain the observed effects.

.1

The importance of steady solutions of the Euler equation in the context of tur-

bulence has been discussed by H.K. Moffat 2° . he argues that turbulent flows can be

- represented in terms of coherent structures with large helicity (Beltrami flows). 20 Our

findings support Moffatt's conjecture in the sense that the flow may be a superposition of

Bcltrami-like structures defined at many different scales.

Whatever the cause of local Beltram ization. it can have far reaching conse-

-. quences. Indeed, we may conjecture that fulkv dcvclopcd tUrbulence rearranges itself int o I

-7-
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hierarchy of coherent near-Beltrami flows with minimal self-interaction. In this case, tur-

bulence should be amenable to multiple-scale perturbation theory 2- or renormalization-group

methods. Furthermore, virtually all turbulence models, starting with those of Prandtl, are

based on scale separation to justify eddy viscosity concepts. The present ideas seem to pro-

vide some justification for these approaches.

-8-
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FIGURE CAPTIONS

Fig. 1 Probability distribution P(cosO) in the channel flow in the region 40 < z, < 328

for:

a. the band-filtered velocity field (k, =- 2;k= + 2; P = 15,16,17,18)

b. the same band-filtered field with the incompressibility condition V - vi = 0 im-

posed.

Fig. 2 Time evolution of the Beltrami ratio for the band-filtered field:

Solid line: velocity field vi(r), (kx = ± 2;ky = ± 2;P = 15,16,17,18)

Dotted line: the same field with the incompressibility condition imposed.

Fig. 3 Probability function P(cos0) for the band-filtered field vi

(kx = ± 2;ky- = 2;k 2 = ± 22) in a simulation of decaying, homogeneous tur-

bulence.

Fig. 4 Cumulative probabilities p(B):

Curve I (e): corresponds to 31 realizations of %(r) (kk = + 2; = ± 2;p = 15- 18)

taken from the time evolution of the flow.

Curve II (e): p(B) generated by introducing random phases into the fields v(r).

Curves (x): same as (*) but with the incompressibility imposed on all fields vj(r).
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Relation between the Kolmogorov and Batchelor constants
Victor Yakhot and Steven A. Orszag
Applied and Computational .athematics, Princeton Uni'ersiy. Princeton. New Jersey 08544

(Received 2 September 1986; accepted 23 October 1986)

It is shown that the renormalization group theory of turbulence leads to the relation
Ba = CK P, between the turbulent Prandtl number P,, the Kolmogorov constant CK, and the
Batchelor constant Ba.

The purpose of this Letter is to show that the renormal- = ( T, 2 (7)
ization group theory"' of turbulence leads to a simple rela- .V(p) = K(p)-)
tion between the Batchelor (Ba) and Kolmogorov (C.)
constants. Here Ba and CK are defined by the inertial range nts independent of p. This has some important

kinetic energy and passive scalar spectra [E(k) and Er (k), implications. If the spectra are given by relations ( 1) and

respectively ]: (2) then

E= CK /3k -513 (1) L = 2p)k2Ekdk =. V(pP)C -/3p43 (2v~p k-~k~d = 6-(8)
and.10 2

E, = Ba(N/' 13 )k -s". (2) and

The parameters N and ? are the scalar and kinetic energy .V= 2x(p) k -Er(k)dk = 3K(p)NBap413 (9)
dissipation rates defined as 2 P 113

N KdX, (3) Dividing (8) by (9) and using relation (5) we obtain
Ba = CKP,. (10)

and _ Substituting the values CK = 1.617 and P, = 0.7179 derived

( vi (4) in Refs. 1 and 2 we obtain Ba = 1.161 in good agreement
-2\dx, X, ) with experimental data.

and K. and v, are molecular diffusivity and viscosity, respec- This result is obtained using the e-expansion in the vi-

tivelv. cinity of the fixed point. Thus, relation (9), is, strictly speak-

In the first step of the renormalization group procedure, ing, valid in the limit of Reynolds number R - o. We believe

we eliminate modes with wavenumbers larger than p from that formula (9) is accurate when molecular diffusion isthe equation of motion for the Fourier components of the negligible in comparison with turbulent diffusion. It should
veoctyain sca fields for and Fourier espetivoe, be mentioned that experimental data on Ba are much morev e lo c ity a n d sc a la r fi e ld s v, (k wo ) a n d T (k , wo ), re sp e c tiv e ly -c t e e h n d t n t e K l o o o o s a t C . T iIn hiscalulaion i isass medtha k~ I th li it ~scattered than data on the Koimogorov constant C K. This

In hiscalulaio, i isassme tht k4p.In helimt 1 .401 can be easily explained since, in many cases, the contrbution
the sole effect of the small-scale elimination procedure is the

from even weak natural convection can strongly influencegeneration of a tubulent viscosity v(p) and diffusivity K(p). the ete r bu nta ontum tansr inlent
In the limit k 4p . kd, where k, is the Kolmogorov dissipa- tho hen rs not nt a re.flow when R is not sufficiently large.
tion wavenumber, the turbulent transport coefficients are
proportional and

v(p) = P, (p) ACKNOWLEDGMENTS
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AN EFFICIENT METHOD FOR COMPUTING LEADING EIGENVALUES
AND EIGENVECTORS OF LARGE ASYMMETRIC MATRICES

I. Goldhirsch*, Steven A. Orszag & B. K. Maulik
Applied & Computational Mathematics

Princeton University
Princeton, NJ 08544

U.S.A.

*Permanent Address:

Dept. of Fluid Mechanics and Heat Transfer
Faculty of Engineering

Tel-Aviv University
Ramat Aviv, Tel-Aviv 69978

ISRAEL

0%

0
•

.5, " , o ' ' * . " O o . , ° • * O . o . . " • -
• 
" n - - . - ° ,

.1 • o • , , . o ' • o , , o % ' .
•

. ' ° • , % • * - - - ° . % . . . . . . . - . . o . . ° . - • - . . - . - .



ABSTRACT

An efficient method for computing a given number of leading

eigenvalues (i.e. having largest real parts) and the corresponding eigen-

vectors of a large asymmetric matrix M is presented. The method con-

sists of three main steps. The first is a filtering process in which the

equation i Mx is solved for an arbitrary initial condition x(O) yielding:

x(t) = evtx(O). The second step is the construction of (n + 1) linearly

independent vectors vm = Mmx, 0 < m < n or vm = emM'x (,r being a

"short" time interval). By construction, the vectors vm are combinations

of only a small number of leading eigenvectors of M. The third step

consists of an analysis of the vectors {vm} that yields the eigenvalues and

eigenvectors.

The proposed method has been successfully tested on several

systems. Here we present results pertaining to the Orr-Sommerfeld

equation. The method should be useful for many computations in which

present methods are too slow or necessitate excessive memory. In par-

ticular, we believe it is well suited for hydrodynamic and mechanical sta-

bility investigations.
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1. INTRODUCTION

Numerous problems in science and technology involve the computation of

leading eigenvalues (and sometimes of the corresponding eigenvectors) of large asym-

metric matrices. In some cases, such as that of the calculation of eigenvalues of

transfer matrices in lattice problems (Stanley, 1971) or in hydrodynamic stability ana-

lyses (Drazin & Reid, 1981), the matrix of interest is infinite, in principle.

While rather efficient methods exist for the diagonalization of symmetric

matrices (see, e.g. Parlett, 1980 or Lewis, 1977) - no satisfactory algorithm for the

asymmetric case is known to us. The main obstacle is, of course, the nonorthogonali-

ty of the eigenvectors. The Arnoldi (1951) method and its variants enable the calcu-

lation of some eigenvalues, but not necessarily those with the largest real parts (which

are important in stability investigations; see however Jenning & Stewart, 1975 and

Saad, 1980 and references therein). At best this method produces eigenvalues of larg-

est moduli. Another disadvantage of the Arnoldi method is the necessity to increase

the dimension of the Krylov (Wilkinson, 1965) subspace considered in order to im-

prove accuracy. This may create memory problems.

Another method (Bennetin et at, 1980; Shimada & Nagashima, 1979),

which was designed to compute Liapunov exponents for dynamical systems, is capable

of producing the real parts of the leading eigenvalues. Its advantage is in the fact that

its implementation does not require a large memory. However the method is slowly

converging and produces neither the imaginary parts of the eigenvalues nor the eigen-

vectors. (However, see Goldhirsch et at, 1987, for an accelerated convergence

method and computation of eigenvectors. The latter can be computed efficiently for

relatively small systems.)

""" "."



It thus seems that many important problems involving 'arge asymmetric

matrices are very difficult to analyze using available methods. The algorithm proposed

in this paper is designed for such problems. It is fast and simple and can therefore be

easily implemented.

The proposed method has three essential steps. The first step is designed

to filter out nonleading eigenvectors. Let x be an "initial" vector and M the matrix

whose leading eigenvalues are sought. We first solve the equation:

dxdx- Mx (1.1)

for 0 t <- to. The resulting vector x(t 0 ) = e Mto x is obviously a combination of

eigenvectors corresponding to leading eigenvalues (henceforth called leading eigenvec-

tors). The nonleading eigenvectors are being damped by exponential factors. More-

over, if it so happens that the chosen initial vector x is independent of a leading

* eigenvector, then this eigenvector will be introduced into x(t) by roundoff errors in

the process of numerical integration of eqn. (1.1). The next step involves the creation

of n linearly independent vectors. This can be done either by computing {Mmx(to);

0< m _ n- 1Q or by computing {emMx(to); 0 m 5 n- }. It is obvious (and

shown below) that the n vectors created this way are independent for nondegenerate

spectra. A method for degenerate spectra will be described below as well. Once we

obtain n independent vectors which are essentially linear combinations of leading

eigenvectors only, it is a matter of straightforward algebra to produce the leading

eigenvalues and eigenvectors.

The structure of the paper is as follows. Section II presents a description

of the michod we propose. Section III offers error estimates and analyses of the alge-

-3-



braic structure of the vectors produced in the second step of the method. Section IV

presents two algorithms based on the proposed method. Section V presents results
obtained from an implementation of the method in the case of the Orr-Somrnerfeld

equation. Section VI offers a brief summary. Those readers not interested in the de-

tails of the mathematical analysis of the method may skip Sec. III.
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11. DESCRIP~TION OF TlE METHOD

Consider a matrix 'M, which is, in general, asymmetric and large (say of

rank R). Assume that the elgenvalues of M: X1, X2, X3 .. are arranged so that

4.Rek 1 > ReX2 > ReX3 - , i.e. it is assumed that the real part of the spectrum of MI

is nondegenerate. Let el, e2, e3 .. be the right eigenvectors of M corresponding to

the eigenvalues %I X2 1 X3  ,respectively.

Any vector x can be expanded in terms of the right eigenvectors of M:

*Upon applying the operator e t> 0, to x we obtain:

e x=Xaie ej (2.2)

Defining the resulting, vector in (2.2) as x(t), we observe that the vector:

i(t) = X(t) (2.3)

can be approximated, for large enough t, by:

i(t) 7 -Zcte 'e (2. 4a)
Fx MtI i=1

o r

* where

-5-



[3i=(2.c
Ix(t) I

and n is a suitably chosen (truncation) integer. The error involved in the approxima-

tion (2.4) is of the order le(M"-X')l I. Thus, for a given desired accuracy there are

values of n and of t which fulfill these requirements. The way t and n are to be

chosen in a practical algorithm is explained below. In the rest of this section it is as-

sumed that (2.4) is an actual equality in order to simplify the presentation.

Consider the following vectors:

VM = Mra-lt(t) (2.5)

where 1 < m < n+ 1. Using (2.4b), we obtain:

Vm = XLim-[iei; I m < n+I (2.6)
i=1

Consider now the matrix Wij defined as:

" Wij = xji- 1  1 g i, j < n (2.7)

and denote Piei = i. The vectors el, 1 < i n are n linearly independent vectors

since the ei's obviously are. Eqn. (2.6) can be rewritten as:

vm = Wmk (2.8)
k= I

The matrix W is a Vandermonde matrix whose determinant is -I(., - Xj) and :s,h bv

assumption, nonvanishing. Consequently 'he n vectors v, vn are indcpendc:it

and spanned by e1 , e,, en. Ilence vn,.0 which i also spanned by e, ' . c m, Cdl

.. 6.
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be written as:

Vn+ I 71 V + + " " nvn 2.9)

Consider now the following linear transformation defined by:

Tv, -- Vm+ 1  1 5 m _ n (2.10)

- This is a linear transformation from the subspace spanned by vj, v" or el, e,

to itself. Using (2.6) and the linearity of T:

n n
Y,%m-'PjTej= YXiinjej (2.11)
i= I i= 1

Hence:

Tei = Xiei  (2.12)

i.e. the X's are also eigenvalues of the operator T that acts in a finite (and small) di-

mensional space. Let:

n
ej= Fgijvj 1 5 i,j< n (2.13)

j= I

be an expansion of the ei's in terms of the vj's. Then:

Tei = 'OijTvj 2.4
j=1

Define now the matrix D by:

Tv, = D v 1 < ij < n 2.15,

where the (Einstein) summation convention over repeated indices is assumed. It ' -

m-I

-'S

*% .e%% o . /~.- *. -... . *.. .. ... . ,. . . .
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lows from (2.10) that Dj= + for 1 < i < n- I and from 2.9) that Dn.j = /

D is just a representation of the T transformation.

Upon substituting (2.12), (2.13) in the left hand side of (2.14), and (2.15)

in the right hand side of (2.14) we obtain:

XigikViL= gijDjkvk (2.i6)

Hence:

Xigik = gijDjk (2.17)

i.e. the row g4k (i fixed) is a left eigenvector of the matrix D corresponding to the

eigenvalue Xi. Using the definition of the matrix D we can now proceed to find X. and

gik. Inspection of the matrix D for small n leads to the following result, which can be

easily checked by substitution into (2.17):

k Ymgk= (2.1S)
-k m1 Xk+ I- M

and
Ym _ ~ (2.19'

M=l , n+ lI- m -

Eqn. (2.19) can also be rewritten as:

nY m - 0 20
M= I

Consequently, given the values of Yi, one c .fn u. 2.2>; :m c pu'e the S7x:r:m

and (2.1 1) and (2.13) to compute the eigzenvcctnr,,. It o.". .

values of "m To this end we perform a ortho-naLi:,at;on ,I thce:, , V



leading to the orthonormal set w, ... w, such that:pi
i  2- cijvj (2.21

j= 1

where the definition of the matrix c is obvious. Hence:

vn-,I = (vn+1.w)kW (2.22
k=1

and using (2.21)

S1 Y(VD.Wk)ck-mvm (2.23)
m= lk= 1

Hence:
n

M l'+ Wk ) km (_.

k= I

Eqns. (2.18), (2.20) and (2.24) constitute the sought solution for the eigenvalues and

the eigenvectors.

All of the above formalism can be easily modified when the vectors vrn are

defined by:

= e(m-). t) (2.25

where r is a chosen time interval. In this case, ki in eqns. (.2.6) - (2.7) is to be r,-

placed by e "". This choice is especially convenient when the rnatrix M actualv

represents a differential operator (such as the Orr-Sornmerfeld o-erator). In tch I

case the vectors vm can be obtained bv solving X = N x .,r 0 < t t, ',:: ',,_

the initial condition. i.e. solving an nitial value problem for the 2;:fcrc'i:i, - '
'S|

r - ",I,'" " : ' , " ' " " " ,' ' " , ' . : ' , - " - " - " " & . ' . -' ' ." " " " "C ),.t ' ' , , - ." - '? '.' " : " " " " .. "



v-rw-~V WI T 707~ ~dW. 717., w- W~ . U- .-

In this way one avoids storing a large matrix M repreenting the differential operator.

Finally, we note that in the above procedure the coefficients of e, for in-

creasing values of i are increasingly damped by exponential factors. Moreover. the

above method should work, strictly speaking, only for cases of nondegenerate spectra.

A remedy to both of these problems is provided by a direct construction of the

orthogonal vectors w i [cf. (2.3) and (2.21)]. This is done by defining:

w= (t) (2.26)

and:

Twi-- 2aikwi + ai, ilwi+ 1; 1 i< n (2.27)
k= 1

where: Tw i = Mw i or Tw i = emtwi corresponding to Tei = %iei or Tei = et ei, respec-

tively (which are the two alternatives presented above). The advantage of computing

the vectors w by the use of (2.27) is that it enhances the weight of nonleading eigen-

vectors (see Section III for details).

The net result of the formalism presented in this section is the construc-

tion of n linearly independent vectors which arc spanned (to a good approximation)

by the first n eigenvectors of M. Then either equation (2.20) or a representation of

the operator T in the basis defined by {w1 ; I _ i 5 m can be used for the computa-

tion of the eigenvalues and eigenvectors. The resulting method is economical and

simple to implement.

-Il).



111. ANALYSIS OF TIE METHOD

The present section is devoted to an analysis of the formalism developed in
section II. More specifically, we investigate the error involved in using a finite

number of vectors ei (or wi). In what follows we shall use the "exponential" version

for the operator T: Tei = e " e i.

Firstly, we wish to investigate the extent to which the (right) eigenvectors,

{ei}, of M are spanned by the vectors {wi} or by the vectors {vi}. Then we propose to

estimate the error involved in the computation of the eigenvalues.

We wish to show that the eigenvectors ei can be written as follows:

i R
e= aijwj + aije Otej (3.1)

j= I j= i+ I

* where R is the rank of the matrix M, .- j - %j, t is the time of filtering or of ini-

. tial integration and the coefficients aij are of order unity. The proof proceeds by in-

duction. By construction:

x(t) = R e (3.2)
i= 1

where a, are coefficients [see eqn. (2.1)]. Consequently, wl, being a normalized vec-

tor in the direction of x(t), can be written as:

R k

w, = NIe oq j

where the right side of eqn. (3.2) was divided by e k t and normalized. N, is a nr;.2-

ization factor. Hence:

2-11-
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e R Xte-" ! a- 1W - .e 1

NI cL ~ l,=

which shows that e1 indeed has the expected form (with al2 l and a, - -

for i . 2). Next we prove that eqn. (3.2) is valid for i = 2. By definition:

w2 = N 2 (v 2 - (v 2*w1 )wl) (3.5)

where N2 is a normalization factor. Hence:

1 R .~t

Iw , + (v2"w')wl aie X(t+r) el + a 2e '(t t)e, + R a e L(t+,t)ei (3.6)
N 2  i=3

Substituting e1 from eqn. (3.4) in the right side of eqn. (3.6):

-1 + (v.,.w ,)wI  1L.(t+X)w 1 _ e .=(t+,t)eC.21toa2e,

- e Ct+t) toei + O 2e e,(t+,t)e- + Ce'le (3.7)
i=3 i=3

By solving for e, in eqn. (3.7) it is easy to see that formula (3.1) is correct for i = 2.

Assume next that eqn. (3.1) has been proven for 1 i< m. Define:

Jaij 1 <5 j< i< m
Aij= O m > j> i> I 3.S)

"C Xmt > j i

B2i= ,0 1_< j_< i_< m

Both A and B are square matrices of rank m. Define also:

aj _> m + -1 i
C) ,0 otherwise

-12



Bv the induction assumption [and using de.initions (3-8, 9, 10) to re'write eq. 3.1

we have:

m nm R

e= ZA wv+ Y XC1 jej (3.11)
j= I j= I J= I

for 1 < i< mn. Hence:

e i = (I - BUi-l(AkjWj + Ckjej) (3.12)

where the summation convention is assumed. For every integer r:

(Br)ik = aij, aii '' ai,_ke ' ,- (3.13)

or

Br.k cc e x"t  (3.14)

Consequently:

(I - B)-1 = 8ik + hike  (3.15)

where hik is 0(1) and hi = 0 for i > k or k > m [see eqn. (3.9)]. Substituting eqn.

(3.15) in (3.12) we obtain:

e*=Atw+.Cet.- i< i < m (3.17)

e i = AJw j + Cijej + ,hike  A ,k j + hike C.-kj e; - !

The first and third terms in the right side t:f eqn. (3.17) are linear comb]-

na-ionsf {,,w,; 1 k 5i m}. The sccond term is, using eqn. (3.10):

-13-



RVR a e tej .IY

j= m 1

The fourth term is:

R R R R
2 hike I akje = I ( Z hikakj)e "ej (3.19)

k=I+ j=m +I j=m+1 k=i+l

Consequently, by separating the terms containing {wj;1 j i} and those which are

superpositions of {wj;i + I j < m} in eqn. (3.17) we obtain:

i m k R
ei = I iijwj+ Y : ek thikAkjWj + 1 rije ej (3.20)

j=I k=i+l j=i~l j=m+I

where i and rij are 0(1) quantities. Note that we used the fact that hik = 0 for i > k

or k > m. It follows from eq. (3.20) that

i m R
el= y7 ijWj+ 1 aYije 'wj+ Z r ije ej (3.21)

j= I j=- i+ 1 j=m+ I

for 1 _ i <_ m, where the definition of aij is obvious. Next we use eqn. (3.21) to

complete the induction process. Eqn. (3.21) itself follows from the induction assump-

tion for 1 < j_< m.

By its definition:

m

wm+1 = Nm+l(Vm+i 1(Vm+-W )wi) (3.22)
i= 1

where Nm,+ I is a normalization factor. Consequently:

Mnll qm ( l) Wi" "
m+ I 1.1

-14-
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where .i are 0(1) numbers. Using (2.4b) and (2.25):

M ~ qm+i iwi =e + Y P[ie" ei (3.24)
i= 1i= 1i= M+ I

By assumption, the vectors e1; 1 < i ! m can be expressed by eq.(3.21). Substituting

eqn. (3.21) in eqn. (3.24) we obtain, after a rearrangement of terms:

qm+l , ~ Pi= rije Iej- Y, Pie *mtei (3.25)

i= Ii=1j= m+ I i= M+ 1
(2)wine.(3.25)

where qm, are the new coefficients of the wi terms. Solving for em+ in eq.(3.25)

we obtain (using eq. (2.4c) for 3i):

*m R

eM+ 1= 1 qm+ iWi + I Sm+l,ke. (3.26)
i= 1 k= m+ 2

where qm+i.i and smt1k are 0(1) quantities (assuming eX t is 0(1)). This completes

the induction. Consequently eqn. (3.1) and eqn. (3.21) are correct for all i > 1.

It follows from eq. (3.21) that the error involved in the assumption that ei

is a combination of w1 , w2 , , w m is O(eX1!t1t), which means the choice of the size

of the subspace of {wi; 1 < i < m} should be such as to have :Re(km,i- ),i)t' >> I

for 1 < i <5 r if r correct eigenvectors are wanted. Notice that no gap in the spectrum

is necessary for this estimate or the proposed method to be valid. Some of the eigen-

vectors (i.e. those for which ,Re(-m+i- X )tj is not large enough) will not be well ap-

proximated by the procedure. In such a case an appropriate increase of the value of'm

will ensure a good approximation for e. A similar statement wil! be shown bcow to

be true for the corresponding eigenvalucs. Before we do that, we prcscnt a send

-15



* result approximating thle error involved in expressing thle ei-envectors e1 in termns o)I

the yin's [see eqns. (2.8), (2.9)].

We wish to show that for each 1 5 i 5 R there is a linear combination of

{vj; 1 i S R), which we denote by ui and which satisfies:

R
ui m ei+ Z Kjje "'es (3.27)

.1=1+ I

where K are 0(l). As before this statement may be proven by straightforward in-

duction. Here we shall only sketch a proof. For i =1 define

U1 = 1: aje ej (3.28)

Hence:

=l el+ jTe itej (3.29)

Next define v~l) as Vk divided by al~e t k )r

=el+ RaZ ((-)e (3.30)
j=2 a,

Hence:

IV R I -e ~ (e)ej (3.31)
j= 2  .

Dividin .()u by - 4e we obtain:

k -16-



V() R( I) j (3.3
j= 2 (XI

Next define:

U1 = V?/ -X1)

or:

U= e2 + R aj e Xi2t(eXil'r - j 1)33
=3 a2  eX2I1

A similar procedure of Gauss elimination steps leads to:

* ~ ~ U = e3 + Yz -::'ex e 2X~ 1  e1tle(3)
j=4 (X3  e243 1  e 3r

e 2z-1 e XZt'l

* The continuation of this process obviously leads to the desired equation

(3.27). It is now easy to see the, ei can be expressed in terms of {v1 , - v,'} with an

error of O(ex..I"it). Notice that when r itself is large the coefficient of e1 in eqn. (3.34)

tends to zero, which shows that one may obtain adequate approximations for large

values oftr and (even) short values of t.

Finally we turn to estimating the error in the eigenvalues, when computed

using a finite number (n) of vectors. To this end define a matrix U by:

U is the reduction (or projection ) of the operator T to the finito n

-17-



sional subspace spanned by the v's (or w's). Let $ be an eigenvector of U. with a

corresponding eigenvalue A:

YU ijj = AOi (3.36)
j= 1

Let:

R
e= E b ijw j  1 < i R (3.37)

j= I

Then, since Te i = e X" e, we have:

*R XtR
Y bijTwj = e I bijwj (3.38)
j=1 j=1

Hence:

R
Tw i = b'kle jtbkjwj  (3.39)

j,k= I

and, using eqn. (3.35):

RUij- y bik'e '¢bkj (3.40)

k= 1

Hence, from eqns. (3.36) and (3.40):

mR
y b-'e'b = A~ i  (3.41)

'= lk= I

Define:

rlN
S = bkpJq~ 4

* -18-
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Flence m

brb' -t~ Ayr (3.43)
i= 1k= 1

R
Since b~jbj 1  rk, we have:

e b~ b' X~ 'Vk A W4r (3.44)
k=1 i=m+i1

By comparing eqn. (3.37) and eqn. (3.1) or (3.21) we observe that:

=i aW.ej1 j> (3.45)

where the definition of "Ii is obvious. Using eqns. (3.8), (3.9) with m =R and a;~ re-

placed by Ti in eq. (3.9) we see that:

b = A + B (3.46)

Hence:

b-1= A-1- A-'BA' + A- 1BA BA' . (3.47)

Since A-' 0 for k < i, by definition, we have to estimate only terms containing ele-

ments of the matrix B in (3.47). In this case:

(AJ-'BA')i_ A*i'Bjj(3AS

* or:



115 i 1)< I.'

The largest contribution of e ' 2 which is possible under the constraints

k< i,> i !5 iis for i,= k and i1 = i. A similar analysis holds for all terms in the

sum eq. (3.47). Hence:

b1 = e k'tdik for i < k (3.50)

where dik are 0(1) numbers. When i _ k, A 1 is 0(l) itself and we denote it by dj.ik

Hence, from (3.45):

R i Xk'C R R =

Svjr + bridie Nf + F bdike e &tk AVr (.1
i=m+ Ik= 1 i=m+lk=i+l

Using (3.45) again (to substitute for bri):

R XtXi
e Zr+ Y rie X'tdike Xk'r Wk +

i=m+I k=1

R R X t XkT _

1 rie dike e ' kt/s A'4fr (3.52)
i=m+ k=i+l

For IRe(kim+i - Xr)tI >> 1 the leading order terms in the double sums of eqn.

(3.52) are e arm+1 I dm+l e 'k and e r, m+Idm. lm+2e "-n 2 , respcc-
k= 1

tively. Hence:

- A) r + e arm+ ( Y dm, .1ke Y y + e " -: tdm + lo \tr., (3.5-;
k= 

I

To lowest order (i.e. nig~cn ng e A'".l) an ciensolution satisICs: A '!'Il

j, The next perturbative correction yields:

7C %



A e ' T + e'M-'"arm+ Idm.r X, - 3.

which indeed shows that for a large enough filtration time, the error in the cieen-

values is exponentially small provided ReA.mI't is well separated from (or much

smaller than) Re,r't. Thus no gap in the spectrum is necessary to obtain excellent

values for the leading eigenvalues. Obviously an increase in m will make the term

e ' as small as needed.

... a. . . . . . . . . . . .



IV. TIlE ALGORITIIMS

In this section we present detailed algorithms for the comput. tion of

% ",X. and el, ,e n. The algorithm is described in steps:

(1) Choose an initial vector x0. It does not matter if x0 is independent of e l

or other relevant eigenvectors. They will be introduced in step (2) by

round-off errors during the filtration process.

(2) Solve the equation i = Mx, with x0 as initial condition, up to a time t.

Normalize the resulting x(t): x, = x(t) Use now x1 as an initial

condition and solve for a time 0, obtaining x1 (0). Repeat this process r

times to obtain:

X X(re)Xr = xr)(4-.1)
Ix(rO) I

The reason one normalizes after each time t is to avoid deal-

ing with large numbers (since jx(t) I oc e)"t for large times). The choice

of r is explained below. Since it is not clear apriori whether x0 is in-

dependent of el,e 2 etc., it is advisable to use low accuracy computation

in the first few iterations. In this way the weight of el,e,, etc., wilI be

amplified.

(3) Compute vk = Mk-IXn, I < k < m+ 1. Orthonormalize

V1 , V', Vm [using Householder transformations (Wilkinson, 1965).

for examplel. The resulting orthonormal vec-ors are denoted by

w1 , w,, w1m. Following each step of the or: honormalization pro-



cedure use the test of step (4) to make sure N-, .•.'...V. are independent.

The matrix c, defined by wi = ccvi, that results from the orthonormal-
.j= I

ization procedure should be kept.

(4) Test whether vm+1 is spanned by v1 , v.. To do this compute:

m
lE = ~Iv,+1 - (,M+ -)w I/Vm+ i 42)

i= 1 .

If the error E is larger than desired, increase m. If this process results in

too large a value for m, go back to step (2) and do several additional

iterations. Then repeat steps (3) and (4) until E is smaller than the

desired accuracy.

(5) Once the matrix c and the vectors vk and Wk are known, use (2.24) to

find the Yk's. Alternatively solve the least square problem minimizing

the expression fIv,,1 - Ey Vif 2. Standard least square routines may be
i= 1 ,

used to solve for the yi's directly.

(6) Use (2.20) to find the spectrum.

(7) Use (2.18) to find the eigenvectors.

It should be stressed that in step (4) the test should be performed for

m = 2, 3, etc., up to a desired m so as to make sure that vj, v., are indeed in-

dependent. It may happen that the test in step (4) results in a value of m which is

smaller than its desired value. In this case. either use a shorter integration time t or

the procedure described below. If spurious eigenvalues appear, they will be

-23- E.
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dependent. A comparison of the eigenvalues for different ,alues of in enabhL, the

identiHIcation of the nonspurious eigenvalues.

The reason the procedure described above may converge for a value of m

(say mi) which is smaller than the desired (number of cigenvalues) m can be a gap in

the spectrum at m, namely:

ReX 1 > Rek, ReXm,>> Rem,+t > (4.3)

In this case, X1, •, and the corresponding eigenvectors are obtained to an ex-

ponential accuracy which is demonstrated in the next section. Therefore it is posible

to obtain the m, left eigenvectors e, L corresponding to e,, 1 i m 1 . These vectors

satisfy:

eL.ej = (4.4)

Expanding ej in the orthonormal set w (see eqn. (2.21)):

(eZL.wk)(wk ej) = 8i (4.5)

Thus (e,.wk) is the inverse of the (known) matrix A (of rank ml):

Qkj = (wtej) (4.6)

Consequently:

eiL (.4.7)
j= 1

Consider now a vector x0 that is chosen to be orthogonal to e1L, 1 5 i m. Now

perform step (2) with the modification that after each time 0. x,(t) is ortho ,'onaized(

to ,v, • i. The resulting vector, after a time t. is:

-:4



i= I

where p is a normalization factor introduced in order to ensure Jyj= 1. Since x has

been orthonormalized to w i it follows that:

MI

X = 'E-e + I aje i  (4.9)
i=1 i> m,

where ei are exponentially small quantities. Substituting (4.9) into (4.8) results in:

1 X€.t 1re

y(t) = - 1 p = eii (eiwj")wj] + I I J't OcJe i - (ei'wj.)wJ] (4.10)

P i= Pi> M,

The difference [e i - (eiw7)wj] is exponentially small for the exact ei's. So is (e)v,+)

for i > m. Thus, for t not too large: y(t) eX"t x and the regular procedure can
i> M,

be applied to y(t) to find %' 2 m,+1, etc. If Xn is close to 'm,+1 a relatively large

time t in (4.10) may be necessary. In this case a better accuracy for ei, 1 < i < m,

should be obtained first. Methods to do so will be given in a future publication.

Another version of the suggested algorithm which is highly suitable when

no gap in the spectrum exists is based on eqns. (2.25) - (2.26). Step (2) involves

then an orthogonalization after each integration for a time of 'r. The projection of the

operator T (in the subspace spanned by the w's) can then be expressed as shown in

Section III [eqn. (3.35)]. The small resulting mxm matrix can be diagonalized by

LR/QR methods (Wilkinson, 1965) (we have used EIGCG I, an EISPACK routi'ic

yielding exponentially accurate results.

We summarize this section by mentionin,, that the above method carT bc

-25-



efficiently used both when the available computer has a small .. ory thnir

TI) and when it has a large one (then more vectors and ejgenvalucs can be compuLt-

ed).

,1
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V. IMPLE\EN'TATION OF TIlE N. mIi()l): 'IlE ()IR-S0\1\IIFII.I)1 ( )\-

TI ON.

In this section we present an application of the methods described above :o

a problem in hydrodynamical stability2: the spectrum of the Orr-Sommerfeld e ,i_,.0

for channel flow. This equation has an infinite number of degrees of freedom and

there is no "gap" in its spectrum. Thus it is a good test case for our methods. More-
-j

over, the existencell of previously computed, highly accurate values of the spectrum

enables us to perform a comparison of our results with the known spectrum,

The Orr-Sommerfeld equation reads:

(U-c)(D2-(x:)W-U"Wr -- (DI - - a )2"V,.1

iciR

V(x,y,t) = W(y)expjicc(x-ct)]

,where U'v) for - 1_ y< 1, is the basic velocity profile, V(x,v,t) is the perturbation

streamfunction, R the Reynolds number and D the cross-stream derivative --. The

dy

real number (x represents the wavenumber of the streamwise periodic perturba:io.1

and c is the sought complex eigenvalue. The real part of the eigenvalue c. is the phase

speed of the perturbation. The growth rate of the perturbation is exp QCt) W'r.

c= Im c. Thus, a perturbation v is stable if c,< 0 and unstable if c,> 0. The bo,:n-

darv conditions on eq.(5-1) are:

v(1 1) = D -V(± 1) = 0 5

The above is an czenvalue problcm. It is tra'n :,,r2 . .

de!cnt problem !rm -h:ch it :, ac: Vl, deriv'cd, b rcd.1..J:: :c .:, .

- N



function y as:

N(x,y,t) = w(y,t)e ia x

even though the equation is separable in time. We thus solve the following initial

value problem:

at(D 2-a 2 )4f+ iaU(D 2-a2)y- iotU"V R- RI (D2-z)2 w

h (± 1) = DxV(± 1) - 0 (5.2a.bt

It is convenient to define:

= (D 2 -2) (5.3)

= p+iX (5.4a)

to obtain the coupled real system:

Dtp-caUX+ctU" x = R-(D 2 -c 2)p (5.5a)

t%+a'Up-caU"O = R-I(D 2 -cz2)? . (5.5b)

(D2-a)O = p (5.5;:

(D _2- 2)1 = X (5.5d)

with boundary conditions:

(± !) -- -- 1) = DO 1) = DZr± ) = 0

-. -"5 -. * -. a;,''2' ." -: -" .- -." " : - ; *.a.--'" "'-" - -' ." "- - a • ..-,.; -..,.- ., ,----, i c .;.. -.a ..-.'. -v.. ..-, -a - . a.v -,.



~The real system ,nay be formnally written as 1,j =,Nl , M1 being ani~.r-~~ea

"-" operator.

These equations have been solved by the Chebycheff pseudo-spectral tech-

nique (see the appendix for details ). An initial filtering time Tf was used to F-oduce a

function x(y,t), which is spanned by a relatively small number of eigenvectors

corresponding to leading eigenvalues Re(-iocc) or the fastest growing modes, as has

been explained previously.

In all computations results have been presented for the parameter values

ox = 1.0 and R = 10,000. The base velocity profile U is (1 - y2 ).

The results of our computations using the methods developed are present-

ed in five tables. A sixth table of eigenvalues from ref.11 is taken as standard and

used for comparing the accuracy of our results In all cases we obtain several leading

eigenvalues to a very high accuracy.

In our computations we vary the filtration time Tf, the sampling interval ,

the accuracy of the time integration as expressed by the discrete time-step size during

filtration 5tf and during the sampling 5t., in order to elucidate their effect on the accu-

racy of the computed spectra and the possible generation of spurious modes. We have

also investigated the influence of the initial streamfunction iV(y,0) and of tb.e nun'ber

of eigenvalues determined on the accuracy of the results.

Three methods have been used for obtaining the eigenvalucs, .i, ex,.

be!ow. Table I presents results of 2 runs with a sampling time/dela1 time of 15 .:;d

an initial filtration of 50. The number of correct eigenvalues obtained us" 2'",

s 5 when the n umber of vectors is 8 or 16. The reason for thl : s t' .,: . '

-"9-



filtration time is too large to produce more ei2envalues accurately. For t: case n - I()

we also obtain two dominant spurious modes. This is due to the sensitivity of the

roots of the characteristic polynomial to small inaccuracies in the coefficients. The

dominant spurious eigenvalues may be easily identified by their appearance as n, the

number of vectors is increased. The initial condition for table I is (1-y 2 - 7--, f

where Wi are eigenvectors corresponding to the fastest growing 8 eigenmodes.

Table II was obtained with an initial condition of N = U2( I+ v). The factor

(l+y) is introduced to ensure that the initial condition has both an even and an odd

part as U2 is even in y. As the filtration time is increased from Tf = 50 to Tr = 75 the

number of accurate eigenvalues rises to 5. The longer filtration time allows for a

better damping of the decaying modes not of interest. It is possible that the cruder

time step in the second case, 8tf = 0.075 as opposed to 6tf = 0.05 may introduce

modes independent of the initial condition by way of numerical noise.

In Table III the vectors vm were generated from the initial condition

U2(l-0.7 1y) after a filtration of Tf = 75 and a delay interval of z = 20. However, in-

stead of using eq.(2-20) for finding the eigenvalues, we have employed the LR algo-

rithm 's implemented in the EISPACK routine EIGCG1 to calculate the eigenvalues

of the matrix directly. Four eigenvalues are obtained accurately both for n= 8 and

- n = 16 vectors.

Tables IV and V were produced using the method of orU!ogonalization

described at the end of section I! ( see eq.(2-2 5 ,2 6 ) ). The eigenvalues o' the redv:ced

matrix obtained were again computed using EIGCG 1. In table IV an ,ncreasc cf T

from 50 to 150 leads to an increase M the number of accurate e:envah: s from 3 t, 5

-30-



for n = 8 vectors. The improved accuracy using this last method is obtained, as ex-

plained in section I1, by the amplification of the weight of the non-leading eigenvec-

tors in the orthogonalization procedure. Indeed, as seen in table V, the number of ac-

curate eigenvalues when n= 32 vectors is used is 13. The method of orthogonalization

produces 12 accurate eigenvalues for n=32 even when no filtration is invoked. In all

cases we have obtained excellent accuracy for the leading eigenvalue. The subdom-

inant eigenvalues corresponding to anti-symmetric modes tend to be somewhat more

accurate than eigenvalues corresponding to symmetric modes.

-31-



'I. SUMMARY ANI) CONCLUSIONS

We have shown how one can obtain leading eigenvalues and eigenvectors

for large asymmetric matrices using a relatively simple and economical numerical

scheme. We have also shown how such a method can be applied when the matrix to

be diagonalized is a J'fferential operator. In the latter case our method does not re-

quire storing of an effective matrix, which represents the differential operator on a

complete basis of expansion functions.

Three variants of the method were tested: a) A direct application of the

formalism presented in section II. b) A construction of a set of vectors as explained in

section II and the associated reduced matrix, followed by a diagonalization using stan-

, dard eigenvalue routines for general matrices. c) Direct construction of a set of

orthogonal vectors as at the end of section II followed by a diagonalization of the re-

duced matrix.

The third variant seems to be the superior method. The method was

found to be very robust and did not require fine tuning to improve the accuracy of the

calculated eigenvalues. Nor does it produce spurious dominant eigenvalues. The accu-

racy of the leading eigenvalues may be further increased by considering larger reduced

matrices. that is by increasing the number of orthogonal eigenvectors. The errors in-

volved in the proposed algorithm are analyzed in detail in section III and are in good

agreement with our numerical results.

When a large matrix, of rank R, is considered the number of operations

:c-!,.sarv to .ind its eigenvalues, using standard methods, scales like R3  In o:ir

.nme:'icwd, the number of operations is proportional to the rank R, the nunber ot \c-

%-3-



tors used, m, and the time of filtration tf, i.e. it is Rntf. The time of filtration depends

on the spectrum, as explained in section 1l1. If one wishes to obtain k correct eicen-

values one needs:

- <<

1
Thus the value of tf is of the order of {1-M+ 1 - k I"

Future applications of this method could include complex and non-

Newtonian hydrodynamical stability problems, lattice eigenvalue problems and other

systems leading to large asymmetric matrices for which the dominant eigenvalues are

of interest and standard methods are either slowly converging or the memory require-

ments are prohibitively large. We believe that this method coupled to acceleration

techniques may enable one to tackle many interesting eigenvalue problems.

-33
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APPENDIX

In this Appendix we present some details concerning the numerical solu-

tion of eqn. (5.4). We have employed a pseudospectral technique based on the expan-

sion of V in Chebyshev polynomials, which gives a good resolution of boundary and

critical layers. A third order Adams-Bashforth time-stepping scheme was used for an

explicit evaluation of the advection (variable coefficient) terms and a second order

Crank-Nicholson scheme for the linear diffusion terms. The time discretized equa-

tions read:

(n+1) _ ( ) 23 6 X<, -i)
- U - 16 %2n, + _L

At 12 12 12

+ U 12 - + 2 = 12 2(D 2 - )(A.I)

and

x(n+ 1) - [(n) 3 (n) - 16 (n-I) + 5 (fl 2)+ a[3 (n- 2)]

At + 12 p 12 12

- ( _ 0 + 5 iO(- - 2) =- a) n+1)+ xn)>(A.2)
12 12 12 2 R

Eqns. (A.l) and (A.2) can be rearranged as follows:

(D 2  22R p(n+ ) F(n,n- 1,n- 2 )

At-

(A.3)
(D 2o_ 2R )X(n+ 1) =F(n~n- 2,n- 2)

(D 2 - A t  171

F, and F 2 being found from (A.1) and (A.2). Tlhe functions 0 and X satis:y Ice

-34-
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eqns. (5.3), (5.5)]:

(D 2 - a2) (n+1)= p(fl+1)

(A.4)

(D2 - a2)X(n 1) = X(n+ 1)

Since the boundary conditions are on V = 0 + iX alone, we have used the following

Green function technique to satisfy these conditions. First, we find solutions to (A.3)

satisfying p~n~')(_ 1) = X(n~ 1)(+ 1) = 0. We call these solutions phoml) and X9g0').

*. These solutions are then substituted in the right hand side of eqns. (A.4) and solved

*, using the (given) boundary conditions 0(± 1) = X(+ 1) = 0. We call these solution

m and h respectively. They do not necessarily satisfy the Neumann boundary

conditions DO(+ 1) = DX(± 1) = 0. Next we solve the homogeneous equation:

(D 2 - al2- 2R )p = 0; (D2  - -- = = 0 (A.5)
At At

using boandary conditions p(l) = 1, p(-l) = 0 and X.(l) = 1, X(-l) = 0 respectively.

These solutions are called p and X4. Similarly we find p and X_ which satisfy (A.5)

with p_(l) = 0, p_(0) = I and X-(I) = 0, %-(0) = 1. Subsequently eqns. (A.4) are

solved with p+, p- and X+, X- on the right side yielding O± and X± respectively (with

boundary conditions X± (- 1) = x± (± 1) = 0 as required). The general solution for

O(n+1) and X(n+ l) can now be written:

(n+t1) = (n+ 1)+ a
hom + aO++

(A.6)
(n 1 (n+ 1)

X ) =ho + b+X+ + b-X

The constants a. and b. are determined by imposing the Neumann boundary cordi-

-35-
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tions DO (n1)(± 1) = D '1(± = 0 thus yielding a solution On *1 + izn  whiL:h

satisfies all four boundary conditions. The solutions 0± and X± need only be corn-

puted once in a preprocessing step thus necessitating only two Poisson solvers per

time step. The above leads to a very efficient time integration for the initial value

problem.

-36-
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Table I

Tf-= 50"' = 15 5tf- 0.05 5t = 0.005 Tf - 50-r = 15 6tf= 0.05 6t, = 0.005

Iden tified Identified
Mode Number Elgenvalue ci  Mode Number Eigenvalue c,

1 3.73967060-03 1 3.73967060-03
2 -3.51600679-02 * 4.58986340-04
3 -3.52076045-02 * 3.40898714-04
4 -5.08987828-02 * -3.02658282-03
5 -6.31504249-02 * -1.49838951-02
• -8.72158010-02 * -2.36492604-02
• -1.24740808-01 * -2.93611665-02
• -1.32275383-01 2 -3.51423731-02

3 -3.52793842-02
4 -5.08971644-02
* -1.09428509-01
• -1.23518682-01
• -1.48108621-01
• -1.84825899-01

.1
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Table II

Tf = 50 'r = 20 5tf= 0.05 5t t = 0.005 Tf = 75 t 20 5tf= 0.075 6t, = 0.005

Identified Identified
Mode Number Eigenvalue ci  Mode Number Eigenvalue c

1 3.73967054-03 1 3.73967055-03
2 -3.51921344-02 2 -3.51630043-02
4 -5.09056673-02 3 -3.67725906-02
* -5.52082215-02 4 -5.08973087-02
* -7.13017236-02 5 -6.18479421-02
* -1.32670178-01 * -8.98244690-02
* -1.47519731-01 * -1.25561448-01
* -1.64393611-01 * -1.90016840-01



Table III

Tf = 75 -r =1 6Otf 0.075 8t, = 0.005 Trf= 50 'r = 20O6r 0.05 5tr 0.005

Identified Identified
W" Mode Number Eigenvalue ci Mode Number Eigenvalue c,

-,1 3.7396706 1E-03 *5.0421 7689E-03
2 -3.513133I0E-02 1 3.73967060E-03
3 -3.77382799E-02 *-9.48657987E-04

4 -5.08939102E-02 *-1.15472857E-02

5; -6.08654660E-02 *-1.55870014E-02

* -8.94164908E-02 *-2.30304183E-02

*-1.23537573E-01 2 -3.40328560E-02
* 1.83295676E-0 1 3 -3.51905276E-02

4 -5.09188577E-02
* -5.12119074E-02

5 -6.27014559E-02
7 -9.9343823 1E-02
9 -1.1 1875376E-01
10 -1. 11941416E-01

* 
1.17783465E-01

* -1.70313262E-01
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Table I'

T, = 50"t = 20 Tf= 75"t = 20 T( = 150 - 20
8tf = 0.05 Ur = 0.005 5tf = 0.075 8t, = 0.005 6t, = 0.075 3t. = 0.005

Identified Identified Identified

Mode Number Eigenvalue c, Mode Number Eigenvalue c, Mode Number Eigenvalue c,

I 3.73967060E-03 1 3.73967060E-03 1 I 3.73967060E.03
2 -3.51932116E-02 2 -3.51137133E-02 2 -3.51723718E-02
4 -5.0905337 IE-02 3 -3.74768214E.02 3 -3.51870632E-0.
* -5.48854885E-02 4 .5.08944600E-02 4 -5.08987622E-02

--7.36915731E-02 5 -6.07586848E-02 5 -6.30009355E-02
• -1.38156654E-01 7 -9.17031242E-02 * -1.37863162E-01
• -1.41371117E-01 * -1.23567838E-01 -1.43432356E-01
• -1.58274564E.01 -1.82561894E-01 -1.74728812E-01

i

4'

J.

,-, * * * *:



Table V

Tf =75 = 20 Tf =50 r = 20 Tf= 0 t =20
t= 0.075 5t, = 0.005 5tf= 0.05 5t, = 0.005 6tf 5t, 0.005

Identified Identified Identified
Mode Number Eigenvalue c, Mode Number Eigenvalue c, Mode Number Eigenvalue c:

1 3.73982608E-03 1 3.73967060E-03 1 3.73967061E-03
2 -3.51127796E-02 2 -3.51672225E-02 2 -3.51672225E-02
3 -3.51320836E-02 3 -3.51865287E-02 3 -3.51865287 E-02
4 1 -5.08984842E-02 4 -5.08987305E-02 4 -5.08987305E-02

5 -6.31517698E-02 5 -6.32014442E-02 5 -6.32014442E-02

6 -6.32018420E-02 6 -6.32515219E-02 6 -6.32515219E-02

7 -9.11772541E-02 7 -9.12220344E-02 7 9.1"2'0344E-02
8 -9.12687323E-02 8 -9.13134832E-02 8 -9.13134832E-02
9 -1.19161983E-01 9 1-1.19223288E-01 9 -1.19223290E-01

10 -1.19342042E-01 10 -1.19380224E-01 10 -. 19380226E-01
• -1.21170936E-01 11 -1.24500810E-01 11 l -1.24500810E-01

11 -1.24500425E-01 12 -1.38224635E-01 12 -1.38224635E-01
12 -1.38223897E-01 13 -1.45450671E.01 13 -1.45453318E-01

--1.44467829E-01 * -1.51063411E-01 * -1.51161943E-01
13 -I.45609239E-01 * -1.5815817301 1 * l-1.58054756E-01

14 -1.46448075E-01 * -1.60717285E-01 1-1.60711699E-01
15 -1.75078430E-01 * -1.61124155E-01 * -1.61259736E-01
17 - 1.81719355E-01 * -1.64875002E-01 * -1.647 33124E-01
• -1.97966129E-01 * -1.67412781E-01 * -1.67404319E-01
18 -2.04658289E-01 * -1.7264931 IE-01 * - 1.72218483E-01

-21 2.07844699E-01 15 -1.75188825E-0 I -1.74695007 E- 01
• -2.20742079E-01 * -1.78192328E-01 * -1.80676443E-01
* -2.22041721E-01 * -1.81309666E-01 17 I.S231922IE-0I

* -2.67948177E-01 * -1.82017191E-01 * 1.33159305E-0I

17 -1.82776874E-01 * -1.89780943E-01
* -1.92666139E-01 -1.95481111E-01

1 -1.98326255E-01 -2.0,652,4GE-01
• ;-2.02233301E-01 * -.0224943' E-01

• -2.20500814E-01 -2.0622269 K-01

* 2.36270762E-01 * -~.34084842E-01
• -3.62463018E-01 2* -2.6509802SE-01

* -3.88173344E-01 -3.11342750E -01

A



Table VI
Least stable eigcnvalues for a - 1, R = 10000

Mode Number Eigenvalue c,

+ 0.00373967
2 - 0.03516728

3 - 0.03518658
4 - 0.05089873

5 - 0.06320150

6 - 0.06325157

7 - 0.091222,74
8 - 0.09131286

9 - 0.11923285

10 - 0.11937073
11 - 0.12450198

12 - 0.13822652

13 - 0.1472339
14 - 0.1474256

15 - 0.1752287
16 - 0.1754781

17 - 0.1828219
18 - 0.203221

19 - 0.203529
20 - 0.206465
21 - 0.208731

22 - 0.23119

23 - 0.23159
24 - 0.23882
25 - 0.25872

26 - 0.25969
27 - 0.25988

28 - 0.26511
29 - 0.26716

30 - 0.28551

31 - 0.28663

32 - 0.28765
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